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SUMMARY

Ther: is aun ongoling elffort tv computerize Liie Arned Services vocational
sptitude battery (ASYAB), tue eulisted selection une classificatiosa test,
aa adaptive mode. lIn an adaptive test, the computer estimates how well the
examinee is uuing atter eacih itca has heen answered and then selects the next
item——more difficult for brighter examinees or easier for less brignt
examinees—-from a large pool of items in its memory pank. Moderu test tneory
allows examinees to be appropriately scored even though tney nave eacn beeil
administered coupletely dirterent sets of items. inis reporL demonstrates
that examiuees who are coniused by tne computerized administratiou mediuw ang
glve inappropriate responses to just a few or tie initial items (i.e., give
responses that are not representative or their actual knowlecge) will be
severely penalized in their tinal score. Applicatioans of apprupriateness
measurement tecuniques show that it is possible to identify sucn examinees
with highly computer—intensive calculations. Use or shurt-cut tormuias whici
have been found useful under svme conditions for appropriateness measuremeut
give results tnat are aucn less uvptimal. 1ssues tor further resedarch are
discussed.
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PREFACE

This technical paper was completed as part of the research conducted
under Work Unit 29220202, Prototype Development and Validation of Selection
and Classification Instruments, under rroject 2922, Personnel Assessment
Svstems.

The research on appropriateness for computer adaptive tests presented
in this paper is ancillary to Air Force responsibility on appropriateness
of examinee responses on the Armed Services Vocational aAptitude Battery.

The Air Force acknowledges the Army for its initial guidance and

funding support on this effort.
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APPROPRIATENESS MEASUREMENT FOR COMPUTERIZED ADAPTIVE TESTS

I. INTRCDUCTION

Juomputerized adaprive testing (CAT) and appropriateness measurement
tLevine & Drasgow, 1982; Levine & Rubin, 1979) are two promising
ipplicazions of item response theory (IRT). The potential benefits of each
application represent important advances in testing and measuremenrt. CAT
offers advantages over conventional, paper-and-pencii tests such as reduced
test length and equivalent measurement precision across the range of test
scores (weiss, 1982). Appropriateness indices provide the capability of
derecting spurious test scores that result from situations such as cheating
or aiigrment errors in marking answer sheets.

To date. appropriateness measurement has been applied to conventional
tests onlv. This paper presents research that examines the potential for
appropriaceness measurement in adaptive testing. More specifically, methods
from appropriateness measurement will be used to attempt to detect one type
of response aberrance that may have a serious impact on some CAT scores.

In the remainder of this introduction, CAT and appropriateness

will be reviewed briefly, a potential form of response aberrance
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tcr CAT will be identified. and the scope of the present research will be

sutlined.

Computerized Adaptive Tests. CAT is designed to administer the set of

icems, from a larger pool of items, that provide optimal measurement of eacnh

zxaminee’s ability. This is accomplished by tailoring the difficulty of
cach ivem administered to the current ability estimate (as calculated from
responses to the preceding {tems). 1In CAT, items that are too easy or oo
difficult to provide information about abilitv are not administered:

instead. examinees receive items during the test tnat are highiy informati-

The ability parameter and item difficulty parameter share the same
scal= {n IRT. making it possible in CAT to select and administer items of

cporuiciate ditficalty. Although a variety of item selection strategies




»xist for CAT, each of these strategies is consistent with the logic of
matehing item diftficulty wicth estimated ability.

he potential of reduced test length for CAT requires that items
perform in accordance with their parameter estimates (Wainer & Kiely., 1987).
More generallv, the IRT model used by the test must be able to account for
an examinee’'s response pattern if the measurement virtues of CAT are to be
realized. Random departures from the model can be expected for some
eaminees on some items. However, the impact of occasional misinformatiwve
responses on the final CAT ability estimate is generally believed to be
small, especially if rest termination is based on reducing the estimate’s
standard error to an acceptable level and a sufficient number of items exist

to accommodate this criterion.

appropriateness Measurement. For a variety of reasons, i multiple-

choice zest mav fail to provide a valid measure of ability for an examinee.
For example. answers may be copied from a more talented neighboar. resulting
irn a spuriously high test score. Spuriously low scores may result from
circumstances such as alignment errors in marking the answer sheet (e.g.,
answering items 5 through 10 in the spaces provided for items 6 through 11).
cultural and/or linguistic bias, or extreme test anxiety. In each of these
cases, the test score may be an invalid measure of the trait purportedly
measured bv the test.

Appropriateness measurement provides several IRT-based methods for
idertifying such scores. Each method develops a quantitative index to
classifv item response patterns as either "normal" or "aberrant."
Appropriateness measurement is model-based; normal response patterns are
characterized as conforming to a specific IRT model for describing item
responses. In this sense, appropriatene,s indices are goodness-of-fit tescs
for response patterns relative to an IRT model. The logic that underlies
aberrance detection for dichotomouslv scored, unidimensional tests is
straightforward: Inappropriate response patterns will contain correct

responses to difficult items co-occurring with incorrect responses to easv

Simulacion studies using appropriateness indices to classify aberrant
and normal response patterns have obtained high levels of detectiorn for some

forms of aberrance on standar .zed tests (e.g., Drasgow, Levine, &




Hdclaughiin, 1937 Drasgow, lLevine, & Williams. 1985, Levine & Rubin, 1979,
High detection rates have been achieved despite misspecification of the IRT
Todel. errors in item parameter estimates, and inclusion of inappropriate
resporse patterns in the test norming sample (Levine & Drasgow, 1982)

The properties of CAT mav allow for successful applications of
ippropriateness measurement. Since the difficulties of administered items
are determined by examinee responses and the IRT model, some tvpes of
sberrance may be easier to identify than with standardized tescts.

¢n the other hand, the relativelyv short length of adaptive tescts mav
no: provide sufficient numbers of items to powerfully test whether a
response pattern departs from the pattern expected under a given IRT model
Molernsar and Hoijtink (1987) have noted that since adaptive tests are
relatively homogeneous with respect to item difficulty, there may rot be

sufficiernt wvariance among izem difficulzies to detect inappropriate ¢
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ot response. Thev recommend that appropriateness measurement not be

v
hel

o
s of less than 20 items. since random fluctuations may docminate

svstematic departures from the IRT model over small numbers of items.

AT Response Aberrance. Though applications such as CAT have generated

interest among measurerent practitioners, several concerns for computerized
testing have been raised (Hunt % Pellegrino, 1985; Matarazzo, 1983) . One
concern is chat taking the test on a computer may present a significant
advanrtage or disadvantage to some examinees. For example, examinees with
ittle or no previous computer experience mav initiaily be intimideted by
the task of taking a computerized test. Test performance mav suffer as a
result. The rnegative impact of anxiety on attention and cue utilization

in zas¥s such as psvcholeogical tests is well documented (Broadbent, 1971;

Faszerbrook. 1959;. Kahneman, 1973).

1

For CAT examinees. computer/test anxiety could result in test-taking
nehavior that departs significantly from the IRT model used bv the :est

For zhese examinees, item responses mav appear to be the product of a rander
pracess rather chan the function of item and perscn parameters prescribed bv

“re [BT madel Anxious CAT examinees might experience difficulty in

attentlon on ifems throughout the test. Some of these anxious
cwarineses, howerer . might “settle down” at some point during the test and

respond to the remaining items In a manner consistent with the IRT model.




The possihility of this latter situation raises an important question for
CAT: 17 an examinee "fumbles" through initial items and then "recovers' -o
respend more appropriately throughout the remainder of the test, does the
adaptive test recover as well and provide accurate results”

Theoretically, adaptive tests are robust to sequences of misinformati-e
responses. 1f enough items are administered, the impact of these aberrant
responses can presumably be minimized and accurate ability estimates mav be
obtained. In practical CAT settings this may not hold true, however. The

oricthms used for item selection and ability estimation may not be rubusct
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to sequences of misinlormative responses, particularly when they occur at
the outset of the test. Short, fixed-length adaptive tests, such as those
planned for use with the Armed Services Vocational Aptitude Battery (ASVAB),

mav be particularly vulnerable.

Present Research. The present research contains a series of Monte

Carlo studies designed primarily to address three iscues: (a) the impact cf
an iniczial sequence of random responses on CAT results, (b) the potential of
appropriateness measurement for detecting this type of response aberrance,
and (¢) the performance of the optimal appropriateness index under practical
testing conditions such as standardizing the index and using an item
sccurity procedure to administer CAT items.

Study 1 exumines the robustness of short, fixed-length adaptive tests
o ar. iriczial sequence of random responses. Study 2 focuses on the highes:
possible detection rates for this form of response aberrance on a 15-item
adaptive test. Results from Study 2 will determine whether any
appropriateness index computed from dichotomous responscs can provide the
level of detection that practical testing situations will require.

Studies 3 through 6 enamine several issues related to implementating
appropriateness measurement for detecting random responses to initial CAT
items. In Study 3, several nonoptimal appropriateness indices are examined
to see {f the performarce of any of these indices approaches the optimal
levels observed in Study 2. The sampling behavior of appropriateness
easurerent results using Monte Carlo procedures is addressed in Study 4.
The resulrs of Study 4 ave then used in the designs f{or both Study 5 and
Study 7 which examine, vespectivelv, the effect of an item securicy

procecdure on detection rates and the generalizabiiity of aberrance decection




using the optimal index under nonoptimal conditions. Study 6 investigartes a

771

randardized version of the optimal index initially used in Study 2 and the

ry,
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cct of standardization on its detection rates.
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IT. STUDY l: ROBUSTNESS OF SHORT ADAPTIVE TESTS

Purpose. A sequence of misinformative responses to initial CAT items
mav have a serious immacr on test results. This study assesses the effect

>f this cvpe of response abe.rance on CAT results for examinees of varving

sbility levels.

Data_Generation. Ten ability levels corresponding to the 5th, 15th,

S85th, and 95th percentiles for a normal distribution were used in
generating responses to a 15-item adaptive test. The item pool consisted of
100 items from the CAT-ASVAB Word Knowledge item pool. Expected a
poscteriori (EAP) (Bock & Mislevy, 1982) estimation was used to obtain an
abilityv estimate after each item response and items were selected to
maximize information at 4.

In ~he control (no aberrance) condition, dichotomous responses to each
item were determined by calculating the probability of a correct response
using the three-parameter logistic model (Birnbaum, 1968) and comparing this
probability to a random number drawn from a uniform (0,1} distribution. If
the response probability was greater than the random number, the item
response was scored correct; otherwise, the responce was scored as
incorrect.

In the aberrance conditions, the initial one, two, three, four, or five
responses for each simulated examinee were made to be random; for these
items. random responding to a 5-option multiple-choice item was modeled bv
setting the probability of a correct response equal to .20. The remaining
item responses were determined by calculating the response probability using

the three-parameter logistic model.

Results. Table 1 shows the average #s calculated over 1,000 simulees
at each ability level and at each of the aberrance conditions. Results for
the no aberrance cordition (k = 0) show that the adaptive test tends to
underestimate above-average abilities and overestimate below-average
abilities. with this negative and positive bias becoming more pronounced at
cxtreme ability levels. These results are consistent with other CAT
research that has demonstrated the regression effect for Bayesian

=stimarion (e.g., McBride, 1977, Weiss & McBride, 1984).




Table 1. Simulation Results for a 15-Item Adaptive Test When

the Initial k Responses Are Random

§ 5 PSD 4 PSD 4 PSD 4§ PSD 4 PSD 4§ PSD

1.640 1.55 0.26 -1.53 0.25 -1.53 0.25 -1.56 0.25 ~-1.62 0.25 1.68 0.26
1.040 -0.99 0.25 -0.98 0.25 -1.03 0.25 -1.09 0.25 -1.22 0.25 1.33 0.25
0.670 -0.64 0.25 -0.68 0.24 -0.73 0.24 -0.85 0.25 -1.02 0.25 ~-1l.1l4 0.2t
0.385 -0.39 0.24 -0.42 0.23 -0.51 0.24 -0.66 0.25 -0.88 0.25 1.05 C.25
0.125 0.11 0 24 -0.13 0.23 -0.32 0.24 -0.51 0.25 -0.750.25 -0.99 0.25
0.125 0.13 0.24 0.01 0.24 -0.13 0.25 -0.39 0.26 -0.71 0.25 -0.95 0.25
0.385 0.36 0.24 0.21 0.24 0.02 0.25 -0.34 0.26 -0.66 0.26 -0.86 0.25
0.670  0.62 0.24 0.44 0.25 0.17 0.26 -0.21 0.26 -0.59 0.26 -0.90 0.25
1.040 0.98 0.23 0.76 0.27 0.32 0.27 -0.14 0.27 -0.57 0.26 -0.84 0.25
1.640 1.52 0.23 1.17 0.30 0.50 0.28 -0.09 0.28 -0.50 0.26 -0.83 0.25
Note: § = Ability parameter used in generating normal item responses.

= Mean ability estimate.

PSD = Mean posterior standard deviation.




Comparisons of #s and #s in Table 1 highligh. the serious consequences
of an initial sequence of misinformative responses on some CAT scores. The
degree of measurement bias is quite severe in some cases. In general, these
results show that the highest ability levels are associated with the largest
levels of underestimation. Significant underestimation occurs for above-
average abilities when the initial two item responses are misinformative,
and this negative bias becomes increasingly pronocunced as the number of
misinformative responses increases. The most extreme example is shown in
the case of the highest ability level (8 = 1.64): An examinee at the 95th
percentile who gives random responses to the first five items of the
adaptive test would obtain, on average, a test score below the 25th
percentile. For less extreme cases, the problem is not as severe but is
still significant. These results strongly suggest that a 15-item adaptive
test, using well-accepted ability estimation and item selection strategies,
does not recover from an initial sequence of random responses to vield
accurate ability estimates.

Table 2 gives the results for adaptive tests of 20 and 25 items. For
the 25-item test, the size of the pool of available items was increased to
200. Results for the control conditions for both tests show that the
regression effect on fs becomes less severe as additional items are
administered. The results for the aberrant conditions, however, indicate
that the effect of misinformative responses to initial items is not removed
or significantly reduced by increasing test length. The level of
underestimation observed for the 20-item adaptive test, after the initial
five responses were random, is comparable to the results for the 15-item
adaptive test where the initial four responses were random. The effect of
an initial sequence of five random responses on ability estimates for a 25-
item test is also significant. The results for the 25-item test are more
severe than those obtained for the 15-item test when the initial three
responses were random, but less severe than the results for the 15-item test

when the initial four responses were random.




Table 2. Simulation Results for 20- and 25-Item Adaptive Tests

When the Initial k Responses Are Random

20-Item Test 25-Item Test
k =0 k =5 k=20 k =5
; i _PSD _6_ psD o PSD _4 __ BsD
-1.640 -1.57 0.22 -1.67 0.22 -1.58 0.20 -1.68 0.20
-1.040 -1.00 0.22 -1.27 0.22 ~-1.00 0.20 -1.22 0.20
-0.670 -0.64 0.22 -1.03  0.22 -0.65 0.20 -0.99 0.20
-0.385 -0.37 0.21 -0.90 0.22 -0.38 0.19 -0.82 0.21
0.125 -0.12 0.21 -0.82 0.23 -0.11 C.19 -0.71 0.21
0.125 0.13 0.21 -0.7 0.23 0.12 0.19 -0.60  0.21
0.385 0.36 0.21 -0.69 0.23 0.36 0.19 -0.51 0.22
0.670 0.63 0.21 -0.62 0.24 0.64 0.19 -0.41 0.22
1.040 1.00 0.21 -0.58 0.24 1.02 0.19 -0.36  0.22
1.640 1.56 0.20 -0.54 0.24 1.57 0.19 -0.31 0.23
Note: § = Ability parameter used in generating normal item responses.

§ = Mean ability estimate.

PSD = Mean posterior standard deviation.




Dis~ussion. Tables 1 and 2 document a potentially serious problem for
short adaptive tests such as CAT-ASVAB. A sequence of as few as two random
responses at the outset of the test may, in effect, anchor some estimates of
ability far below true ability. The problem is not removed by administering
additional items. Decisions based on these spuriously low ability estimates
may lead to selection and classification errors with potentially serious
implications for the examinee and the test user.

The regative consequences of a sequence of misinformative responses to
initial CAT items warrant the development of methods for detecting the
occurrence of this form of response aberrance. The posterior standard
deviation (PSD), calculated during EAP estimation, would seem to be one
logical candidate. A sequence of random responses would be expected to
inflate the error in the ability estimate; the PSD should reflect this.

From the results reported in Tables 1 and 2, however, it appears that the
PSD was largely insensitive to the occurrence of random responses to initial

CAT items.




III. STUDY 2: OPTIMAL DETECTION OF RANDOM RESPONSES TO INITIAL ITEMS

Purpose. The results in Tables 1 and 2 indicate that adaptive tests
will urderestima~e the abilities of many examinees who give misinformative
responses to initial items. This study examines the highest possible rates
of dete:tion for this form of response aberrance. Focusing on the upper
bound of detectibility allows for a determination of the potential for
applying approrriateness measurement to this problem. Research addressing
issues related to this application are justified only if reasonable

detection rates have been observed in the optimal case.

The Appropriateness Index. Levine and Drasgow (1988) have shown that

he Nevman-Pearson lemma (Lehman, 1959) can be used to obtain a most
powerful statistic for testing the hypothesis that a response pattern is
normal versus the hypothesis about a specifi: form of test-taking aberrance.

For a vector of dichotomously scored responses u, the test statistic is
Al = P () / Py(u), (L

where PA(u) is the probability of observing u when the response pattern was
generated under conditions of aberrance (e.g., random responding to the
first « items) and PN(u) is the probability of observing u when the response
pattern was generated under normal test-taking conditions (e.g., the three-
parameter logistic model).

For an n -item adaptive test with deterministic item selection

n
Po(u) = [Jtm P ()i (1 - P ()15 1 £(8) a8, (2)
N i=1 °; %

where Si is the item number of ith item administered, Ps () 1is the
1
probability correct for an examinee with ability 4, u, is the dichotomous
response to the item administered at stage I, and f(§) is the density of the
abilitv distribution at 4.
To obtain PA(u), where aberrance in this case is random responding to

che inicial k items on the test, equation 2 is modified so that the random

resnonces are modeled by PS {4) = .20 (assuming 5-option items) for
all 4 and I = 1 to «:

u
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The appropriateness index based on equation 1, the likelihood ratio
LRY, is the most powerful hypothesis test in the sense that maximum power
is achieved for each given Type 1 error rate a. That is, in testing the
hvpothesis that a response pactern is "normal"” versus the hypothesis that
the pattern is "aberrant," no other appropriateness index computed from item

responses provides greater power at a (Levine & Drasgow, 1988).

Appropriateness Index Power. One technique that has been used to
axamine the effectiveness of an appropriateness index in classifying ncrmal
and aberrant response patterns is the construction of Receiver Operating
Characteristic (ROC) curves. Assuming that large index values are
associated with aberrance. a point on the ROC curve is obtained by
specifving a score ¢ for the index and then computing

x{t) = the proportion of population X (normal) response
patterns with index values greater than ¢;
v{(t) = the proportion of population ¥ (aberrant) response
patterns with index values greater than ¢.
The ROC curve consists of the points (x(t), y(t)) obtained for various
values of ¢. The false alarm rate (probability of incorrectly labeling a
normal pattern as aberrant) when using t as the cut score is given by x(¢).
The hit rate (probability of correctly identifying an aberrant pattern) is

given by y(£).

Asymptotic ROC Curves. Previous examinations of the detection rates of

various appropriateness indices used distributions of normal and aberrant
response patterns generated with Monte Carlo procedures, combining these
patterns into a single group and ordering them on the magnitude of the
appropriateness index, and constructing an ROC curve in the manner described
in the preceding paragraph. These sample ROC curves represent stochastic
approximations to the population ROC. The accuracy of these approximations
has not been extensively investigated.

An analvtic procedure for constructing ROC curves is presented ir the
following paragraph. This procedure determines the asymptotic ROC curve for
a specified appropriateness index, form of aberrance, and adaptive test.
Unlike the sample-based ROC curves generated by Monte Carlo methods, the
asvmptotic ROC curves contain ne sampling error and thus displav the

performance of the appropriateness index in the population.
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Specifying a test length of n items and an item pool for the
deterministic adaptive test, the analytic procedure involves the following
steps. First. all poussible 2™ dichotomous response patterns are
enumerated. For each response pattern u = (ul, u2,4.., un), the n items
that the adaptive test would administer to an examinee demonstrating pattern
u are then determined. The a, b, and ¢ parameters for these items and u are
then used to compute PN(u) and PA(u). An exact value for k is specified
for PA\u). At this point in the procedure, an appropriateness index is
computed for response pattern u. In the case of the LR index. the
probabilities PN(u) and PA(u) {(equations 2 and 3) are used to obtain .

Since a 15-item deterministic adaptive test has only 215 = 32,768
different response patterns, it is possible to compute PN(U) and PA(u;
exactlyv for each pattern u. This property allows for constructing the
asvmptotic ROC curve, By ordering the response patterns from highest to
lowest on the magnitude of the appropriateness index (assuming that large
index values are associated with response aberrance) and computing
cumulative PN and PA with each successive pattern, the information required
o construct the asymptotic ROC curve is obtained.

For ul, the response pattern associzted with the largest index value,
PA(ul) and PN(ul> represent the values y[k(ul)] and x[k(ul)], respectively.
These coordinates give the hit rate and false alarm rate, respectively, and
represent the initial point on the ROC curve. The second point on the ROC
curve represents the hit and false alarm rates when using cut score A(uz),
where u2 is the response pattern associated with the second largest index
value. A point on the ROC curve is obtained by computing x[k(uz)] = PN(ul)
+ PN(uz) and y{A(uz)] = PA(ul) + PA(u2). The coordinates for the kth point

are x[)(uk)] = PN(ul) + PN(u2) ...+ PN(uk-l) + PN(uk) and y[x(uk)] =
PA(ul) + PA(uz) +. ..+ PA(uk-l) + PA(uk)‘ where uk is the response pattern
iving the kth largest value of A. In this way, the 2" points for the

o4
pur

asymptotic ROC curve are obtained.

Analyses. A series of analyses of the type described in the preceding
paragraphs were performed to examine the power of the LR index for detecting
random responses to the first k items of a 15-item adaptive test, where k
equaled 1. 2. 3, 4, or 5 All possible response patterns for a 15-item test

ware =numerated, resulting in 32,768 patterns. The item pool for the tes:




consisted of the 100 most informative items from the 258 items in the CAT-
ASVAB Word Knowiedge item pool. Modal Bayesian estimation (Owen, 1969,
1975) was used to obtain ability estimates at each stage of the test and
items were selected to maximize information at 4. Equations 2 and 3 were
computed using a normal [0,1; density and Simpson’s rule for numerical
integration. Asvmptotic ROC curves were then constructed for the LR index

in each of the five aberrance conditions.

Results. Table 2 contains selected points from the asymptotic ROC
curves for the LR index. Figure 1l shows the ROC curves. The detection
vates given in Table 3 indicate that an initial sequence of random responses
can be accurately identified. High hit rates, relative to low false alarm
rates, were obtained using the LR index. High detection rates were achieved
even in the least extreme case of aberrance. When aberrance is defined as a
random response to the first item onlyv, the LR index correctly identifies
over half of the true instances of aberrance at a false alarm rate of .10.
Approximately the same degree of power exists for the extreme case, where
random responses are given for the first five items, but this level of

detectability is achieved at the expense of a false alarm rate of only .00l.

Discussion. Table 3 and Figure 1 present a successful application of
appropriateness measurement to a form of response aberrance that can have
serious consequences for CAT-ASVAB scores. The results in Table 3 indicate
that an initial sequence of random responses can be detected with high
levels of accuracy. These detection rates were achieved at the false alarm
levels that would be required for practical application.

The results of this study demonstrate the potential for appropriateness
measurement in CAT. These results justify further studies focusing on
practical issues involved in implementing an appropriateness measurement

procedure for detecting misinformative responses to initial CAT items.




Table 3.

Proportion of Aberrant Response Patterns Detected
by the Likelihood Ratio Index at Selected ROC Curve Points

(Aberrance = Random Responding to the Initial k Items)

a k =1 k =2 k =3 k =4 k =35
.001 13 .26 .35 45 49
.005 .21 36 .46 .56 .62
.01 27 41 .52 .61 .66
.02 33 47 .57 .66 .71
.03 37 .50 .61 .69 .75
04 .40 .53 .64 71 .77
05 43 55 .66 .73 .78
.07 47 59 .69 .76 .81
10 52 .64 .73 .80 .85

Note: a = Proportion of Normal Patterns Incorrectly Identified as

Aberrant.
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Figure 1. ROC Curves for the Likelihood Ratio Index Where Aberrance =

Random Responses to the Initial k Items.
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IV. STUDY 3: DETECTION RATES OF NONOPTIMAL INDICES

Purpose. The effectiveness of several d'fferent appropriateness
indices will be evaluated in this study. The indices include Drasgow,
Levine. and Williams' (1982) srandardized version of the log likelihood

v iLevine & Rubin, 1979), Tatsuoka's (1984) "extended" caution index,

na

[a¢}

and two fit statistics given by Rudner (1983). These four indices were

chosen because they have been successful in detecting some forms of response

aberrarce when applied to conventional tests. In some cases, these indices
have provided detection rates approaching the optimal levels given by the 'R
index (Drasgow et al., 1987). Each of these nonoptimal indices 1is

relatively easv to compute, thereby increasing their appeal as candidates

for practlcal testing situations. The primarv goal of this study is to

cr

issess the degree zo which these indices are less than optimal.

Appropriateness Indices Drasgow et al. (1985) provided an approxima:e
standardization of Lewvine and Rubin's (1979) LO index. Thev
aTpvle
L, =Z u, InP (4) +# (1l-u.) In Q.(4) . i~
) : i i 1

where ~ is an ability estimate computed from the examinee’'s iZem responses.

? .o is ~he probabilitv of an examinee with ability § making the correc:
response to item :. u is the dichotomous item response for item i, and
50 0= -7 (7). Drasgow et al. (1985) give an approximate

LQ - E(LO) .
LZ = :
y 12
Var(Ly) | /
where
- - 3 3 th
E(LO) Z <Plr9) In Pi(e) + Qi(e) In Qi(ﬁ),, 5
and

i

. . . N
varilL,) = I P (8)Q (4)11n(P (8)/Q (8))° ¢

in previous studies with conventional paper-and-pencil tests. maximum

Livelitood ability estimates (MLEs) were used to provide the 49s of equations

TEeST 3,

« rhrengh 70 In the present studv of adaptive computer administered

madar Bavesian estimares are used




Rudner (1983) suggested two indices that are three-parameter
generalizations of Wright's (1977) Rasch model fit statistics:
2
I

L by o B
Fl =4 2 PL()Q () (8)

and

"2
T (u. - P (9)°)
L 1
b (4 (
< PL.\->QJ:\9)

The las: appropriateness index is the approximate standardizatiorn of the

fourth "extended caution index" given by Tatsuoka (1984):
z 591(9) - u1)<Pi<9> - Pyl
T, = = (16)

L P.(6)0.(8)(P (8) - P)211/2
1 1 1
where
1 R
P == 3P (§)-. (1)
n 1

Analvses. Asvmptotic ROC curves for LZ, Fl, F2, and Tas were
constructed using the analytic procedure described in Study 2. Test
specifications were identical o those used in Study 2. Aberrance was

defined as random responses to the initial five items of the test.

Results. Table 4 gives the proportion of aberrant patterns detected by
each index at various false alarm rates between .00 and .10. Also listed in
Tablie 4 are the optimal detection rates given by the LR index. Figure 2
shows the ROC curves for each of the nonoptimal indices.

From the results in Table 4 it is evident that none of the nonoptimal
indices provided aberrance detection approaching optimal levels. At an
error rate of .005, for example, the best performing nonoptimal index (F2)

was only 25% as powerful as the LR index.

Discussion. The nonoptimal indices represent omnibus tests of response
aberrance. In this sense. their ineffectiveness in detecting random
responses to the intial five items of a 15-item test is not surprising.

The IR index provides superior detection because an alternative hypothesis

is spevified.
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Table 4 Proportion of Aberrant Response Patterns Detected

bv 5 Appropriateness Indices at Selected ROC Curve Points
{ Aberrance = Random Responses to the Initial 5 ltems)

2 LR LZ Fl F2 T4
o0l .49 .00 .01 .11 01
uns .62 11 .03 .16 .02
01 66 212 .05 .20 .09
02 7 .15 .08 .22 13
.03 .7 .18 .11 .23 .14
Ou 77 .20 .19 .25 .16
.05 .78 .23 .20 .26 .20
07 .81 .26 .23 .28 .24
10 .85 .29 .27 .32 .27

Note: a = Proportion of Normal Patterns misclassified as Aberrant.
LR = Likelihood Ratio.
I.LZ = Standardized Log Likelihood.
F1 = Standardized Squared Residual.
F2 = Standardized Squared Residual.

T4 = Standardized Extended Caution Index.
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Figure 2. ROC Curves for Nonoptimal Appropriateness Indices.

20




Another constraint to aberrance detection was provided by the small
number of item responses analyzed. Comparisons of results for LZ, Fl, F2,
ad Te on an 85-item test (Drasgow et al., 1987) and a 30-item test
‘brasgow, Levine, Williams, Mclaughlin, & Candell, in press) show a
significant decrease in detecting the 30% spuriously low condition with the
shorter test. In applying these indices to 15-item tests, further decreases
in detection rates would be expected. Molenaar and Hoijtink’'s (1987)
warning against the use of nonoptimal indices on tests of fewer than 20
items appears tou be wvalid in the present case. Five aberrant responses and
10 nonaberrant responses do not appear sufficient to generate a signal
distribution that is distinguishable from the distribution of noise when

asing an omnibus index such as LZ or T4.

21




V. STUDY 4: RECOVERY OF ASYMPTOTIC ROC CURVES USING
MONTE CARLO METHODS

Purpose. The ROC curves presented in Studies 2 and 3 were constructed
by an analytic, as opposed to probabilistic, procedure and contain no
sampling error: these curves give the performance of the appropriateness
indices in the population. In contrast. previous appropriateness
measurement studies have used Monte Carlo methods to generate samples of
normal and aberrant response patterns prior to constructing ROC curves. Two
important concerns with these methods are the accuracy and stability of the
ROC curves they produce. To date, the sampling behavior of ROC curves
constructed by Monte Carlo methods has not been systematically examined.

The sample sizes for normal and aberrant response patterns needed for
accurate and stable ROC curves are unknown

This study focuses on the accuracy and variability of sample-based ROC
curves. Monte Carlo methed., of the type found in previous appropriateness
measurement studies are used to generate samples of aberrant and normal
patterns. POC curves are conutructed using different Ns for aberrant and
norrii samples to examine the effects of sample size.

The results of these analyses provide important information for at
least two reasons. First, previous research on appropriateness measurement
can be reexamined to see if the sample sizes used in these studies provide
accurate results in the present analyses. Determining the Ns needed for
accurate and stable ROC curves will also make it possible to interpret with
greater confidence the Monte Carlo studies presented in Study 5 and Study 7.
Although the analytic procedure is an elegant and powerful approach for
constructing ROC curves under certain limiting conditions (e.g., tests of 15
items or less), several questions about detection rates cannot be addressed
with this approach but insc:ad require Monte Carlc simulation. One of these
questions involves the effect of an item security algorithm on detection
rates, which is the focus of Study 5. Study 5 involves a larger population
of response pattern/test items combinations than can be handled with the
analytical procedure, given practical constraints such as computer memory and

computer processing time.

Data_Generation. Normal and aberrant response patterns were generated

bv first sampling an ability parameter from a normal distribution with mean
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0.0 and variance of 1.0. At each of the 15 stages of the adaptive test, the
probability of making a correct response was given by the three-parameter
logistic function. Aberrant response patterns were created by fixing the
probabilitv of a correct response at 0.20 for the first five items. The
item pool for the test consisted of 100 CAT-ASVAB Word Knowledge items.
Ability estimates were obtained using modal Bayesian estimation, and items
were selected at each stage of the test by using a maximum information
criterion. The initial abilitv ectimate was set to 0.0, the mean of the
Bayesian prior, for each simulated examinee.

Samples of normal patterns consisted of 200, 1,000, 2,000, or 4,000
patterns. Aberrant samples were 100, 500, 1,000, or 2,000. These sample
sizes were chosen to span the range used in previous research. Table 5

provides a summary of the 16 conditions.

Analvses. ROC curves were constructed by first merging the samples of
rormal and aberrant patterns and ordering these patterns from highest to
lowest with respect to the LR index computed for the pattern. Beginning in
the list of patterns with the aberrant pattern associated with the largest
index value, and proceeding with each successive aberrant pattern, the
proportion of aberrant patterns and normal patterns existing at that level
or above in the list were determined, providing the coordinates for a point
on the ROC curve. Thus, the hit rate was uniformly incremented by the
reciprocal of the aberrant sample N at each point on the ROC curve.

The procedure for constructing ROC curves described in the preceding
paragraph differs from the procedure implicit in the definition of an ROC
curve given in Study 2. As defined in Study 2, ROC curves are constructed
by evaluating hit rates and false alarm rates at each index value, ordered
from largest to smallest (assuming that large index values are associated
with aberrance). Using this approach, each successive point on the ROC
curve (i.e., moving from low false alarm rates to high false alarm rates) is
not necessarily associated with a larger y-coordinate. For example, if all
of the patterns for two successive index values are nonaberrant, the hit
rate will remain const~nt while the false alarm rate increases. The
contrasting approach used in the present study, where each successive point
on che ROC curve necessarily does possess a larger v-coordinate than the

previous point, was chosen for reasons of computational efficiency. It is
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Table 5. Summary of Data Sets used to Evaluate the Recovery of Exact ROC

Curves
Aberrant Normal
Data Set Sample Size Sample Size
1 100 200
2 500 200
3 1,000 P
4 2,000 200
S 100 1,000
6 500 1,000
7 1,000 1,000
8 2,000 1,000
9 100 2,000
10 500 2,000
11 1,000 2,000
12 2,000 2,000
13 100 4,000
14 500 4,000
15 1,000 4,000
16 2,000 4,000
24




important to note that the fundamental shape of the ROC curve will be the
same using either procedure described in Study 2 or the procedure used in
the present study.

Conditions 1-3, 5-7, and 9-11 contained 20 independent replications.
To reduce CPU time, conditions 4, 8, and 12-16 contained 10 independent
replications. A graphic procedure was used to examine the variability of
the Monte Carlo ROC curves. This procedure is similar in spirit to Thissen
and Wainer's (1983) "N-line plot" technique for evaluating the confidence
envelopes for item characteristic curves. For each condition, the ROC
curves generated by Monte Carlo simulation were plotted simultaneously.
Recovery of the asymptotic ROC curve was also evaluated graphically by
plotting points from this curve against the sample-based curves.

Results. Figure 3 shows the ROC curves constructed using 200 normal
patterns and 100, 500, 1,000, and 2,000 aberrant patterns, respectively.
Figure 4 shows the curves for samples of 1,000 normal patterns and each of
the four sample sizes for aberrant patterns. Figures 5 and 6 give the
curves constructed using 2,000 and 4,000 normal patterns, respectively, and
the four sample sizes for aberrant patterns. The open circles in each plot
are points from the asymptotic ROC curve for the LR index.

It is evident from Figures 3 through 6 that the range of sample sizes
used in the 16 conditions resulted in large differences in the variability
and accuracy of the ROC curves. It is also clear that the smaller sample
sizes do not provide acceptable levels of stability and accuracy.
Conditions 1, 5, 9, and 13 (100 aberrant patterns) resulted in the least
accurate ROC curves. The most dramatic improvement in accuracy and
stability occurs when the aberrant sample size is increased from 100 to 500
(conditions 2, 6, 10, and 14), but the ROC curves generated in these
conditions are still highly variable.

Condition 16 (4,000 normal, 2.000 aterrant) provided the most accurate
and stable ROC curves. Eight of the 10 curves in this condition very
closelv approximated the asvmptotic ROC curve. Condition 12 (2,000 normals.
2.000 aberrants) and Condition 15 (4,000 normals, 1,000 aberrants) appear to
be equivalent with respect to accuracy, but the curves constructed in

condition 15 are somewhat less variable.
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Figure 3. ROC Curves for Data Sets 1 - 4.
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Figure 4. ROC Curves for Data Sets 5 - 8.
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Figure 6. ROC Curves for Data Sets 13 - 16.
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Discussion. The purpose of the analyses presented in this study was to
determine the necessary sample sizes for constructing ROC curves using the
LR index. Samples of 4,000 normal patterns and 2,000 aberrant patterns
provide accurate approximations to the asymptotic ROC curve. These sample
sizes will be used in Studies 5 and 7.

Samples of 4,000 normal and 2,000 aberrant patterns have been used
frequently in previous appropriateness measurement research. The results
presented in this study provide at least partial support for the Monte Carlo
methods used in these earlier studies. [t is important to nc:e that the
present results were obtained for a test of 15 items. The interaction of
test length and sample size needs to be examined with longer tests.

However, constructing asymptotic ROC curves using the number of items found
in many standardized tests is not currently feasible; computer memory and
processing requirements for such analyses are prohibitive. For example,
there are more than 35 million dichotomous response patterns for a 25-item
test; over 1 billion patterns exist for a 30-item test. An alternative to
the analytic procedure will be required for evaluating the asymptotic ROC

curves for longer tests.




VI. STUDY 5: EFFECT OF AN ITEM SECURITY PROCEDURE
ON OPTIMAL DETECTION

Purpose. The results presented in Studv 2 for the LR index are based
siodn adaptive test that is deterministic with respect to item
administration at each branch of the test. That is, a one-to-one
correspondence exists between each dichotomous response pattern and the set
of items administered by the test. It is not likely that this situation
would be encountered in practice, however. For purposes of test securitv,
many adaptive tests use procedures for limiting th: exposure of items.

The question addressed in this study is whether an item security
procedure degrades the power of the IR index for detecting random responses
to initial items. If aberrance detection changes significantly as a resul:
of the item security algorithm, the analytic procedure used in Studies 2 and
3} cannot be used to evaluate the LR index with practical adaptive tests.
Instead, Monte Carlo procedures of the tvpe used in Study 4 will be
required. If the performance of LR is unaffected by the item security
algorithm, the analytic approach will remain a valid procedure for

evaluating the index with adaptive tests.

D jon. Monte Carlo procedures identical to those described
in Study 4 were used to create samples of 4,000 normal and 2,000 aberrant
response patterns. Aberrant patterns contained random responses to the
first five items of the test; response probabilities for the remaining 10
items were determined by the three-parameter logistic model. The item pool
and ability estimation procedures for the adaptive test were identical to
those used in Studies 1 through 4. Unlike the test used in Studies 1
through 4, however, the adaptive test simulated in the present study used an
item security procedure when selecting items. At each stage of the test,
the most informative unused item is sampled with a probability of .25 from
che appropriate row in the information table. If this item is not selected,
the next most informative unused item is sampled with probability .33. If
reither of the first two items is selected, the third most informative item
i{s sampled with probabilitv .50. The fourth most informative item is
sdministered if none of the first three items are sampled.

Ten independent sets of aberrant and normal samples were generated.

R curves were constructed wichin each replication in the manner described




in Study 4, using the LR index to identifv aberrance. These curves were
then plotted simultaneously, along with points from the asvmptotic ROC curve

for the LR index.

Results Figure 7 shows the 10 ROC curves for the LR index where a
securicy procedure was used when selecting items. The open circles in
Figure 7 are points from the asymptotic ROC curve for LR, where the most
informative unused item was selected at each stage of the test.

The ROC curves in Figure 7 display more variability than the curves
shown in condition 16 of Figure 6, which were constructed with identical
sample sizes but without an item security procedure. Taken together, the
curves in Figure 7 indicate that the item security procedure did not reduce
the power of the LR index. Five of the curves show higher detection rates
than the asymptotic RQC curve for the LR index. The other five curves

closely approximate the asymptotic ROC curve.

Discussion. Item security procedures are a necessary feature for
large-scale adaptive CAT. These procedures minimize the exposurc of items
in the item pool, thereby decreasing the likelihood that examinees may
benefit from previous experience with the same test. In addition, new items
will not need to be developed as often when the exposure of current items is
limited by a security procedure.

Results from the present study indicate that the item security
procedure used in selecting CAT-ASVAB Word Knowledge items does not decrease
the power of the LR index when compared to detection rates obtained without
the security procedure. Of course it is possible that other security
procedures may greatly decrease detectability, but in view of the similarity
between various proposed security procedures, this seems unlikely.
Consequently it seems safe to conclude that LR will detect about as well

with a deterministic administration procedure as with a security procedure.
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VII. STUDY 6: STANDARDIZATION OF THE LIKELIHOOD RATIO INDEX

Purpose. Observed differences between distributions of appropriateness
index scores for normal and aberrant patterns may reflect differences in
ability or test score distributions in addition to providing evidence of
index effectiveness. An index value at one ability level or test score may
suggest a high probability of response aberrance wailc the same index value
at another test score indicates an adequate fit of the IRT model. In such a
case, the index confounds appropriateness measurement with ability.

The problem identified in the previous paragraph involves the
standardization of an appropriateness index, which has been defined as the
extent to which the conditional distributions of the index differ across the
range of § for non-aberrant examinees (Drasgow et al., 1987). Well-
standardized indices display equivalent conditional distributions across
ability levels. These indices allow for a single cutting score and provide
aberrance detection that is largely independent of differences in ability
distributions across normal and aberrant samples. Poorly standardized
indices make it impcssible to use a single cutting score to classify
response patterns, since a given index value can have dramatically different
meaning depending on the corresponding test score or ability. Standardized
interpretations of these index scores require evaluations of the conditional
distributions of the index.

The LR index is not well standardized. To date no attention has been
given to standardizing LR because the index has been used as a benchmark
statistic and not as a practical appropriateness index. Since any attempt
ro standardize LR will lower detection rates, the LR index has been used in
its unstandardized form in order to provide optimal detection rates. This

study examines detection rates for a standardized version of LR.

Analyses. A standardized version of the LR index was developed by
evaluating cumulative distributions of the logarithm of LR within several
sutually exclusive ability intervals. Asymptotic distributions of log LR
were obtained by enumerating all possible response patterns, in the same
manner used to construct asymptotic ROC curves in Studies 2 and 3. The
probability of an observed log LR score, conditioning on estimated abilicty,
served as the standardized index. This procedure will be described in

detail in the following paragraphs.
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There are two approaches to studying the standardization of an
appropriateness index. The scientific question of the relation between the
LR index and ability can be addressed by focusing on changes in F(A|4)
across ¥, whereas a more practical approach focuses on changes in F(AIB)
across 9. It seems important to investigate the practical approach because
conditioning will take place on estimated ability in practice. Therefore,
conditioral disrriburions of LR were defined on intervals of 4.

Asymptotic conditional distributions were created by first enumerating
all possible patterns for a 15-item test, computing LR for each pattern, and
ordering these patterns on 4. An important decision that has to be made at
this point in the analysis is how to divide the complete distribution of
32,768 index scores into conditional distributions. One of the goals in the
present study was to accurately document the changes in the distribution of
LR across #. Ideally, the number of # intervals and span of each interval
should be determined in such a way that the observed changes in the
conditional distributions are gradual. For comparison purposes, these
distributions should contain equivalent numbers of patterns. Conditional
distributions of LR were created in the present study by selecting
successive sets of 1,024 patterns from the ordered list. 1In this way, 32
distributions of equal size were created, with each distribution containing
approximately 3% of the response patterns.

The logarithm of the LR index (hereafter referred to as LLR) was
computed for each pattern to reduce the variance of index scores across
conditional distributions. Note that this is a monotone transformation; the
rank orderings of LR are preserved in the transformation.

A standardized version of the LLR index was created by transforming
each index score into an approximately uniformly ?istributed score. This
was accomplished by computing the LLR score and 4 for each response
pattern and then calculating the conditional probability of the observed LLR
score given that the ability estimate falls into §'s interval. Thus, the

standardized LLR index is:

LLR_ = Prob (LLR < LIR'| 6 ¢ 1), (12)
where LLR’ is the observed index score for a normal response pattern and I
is the interval containing the # for the pattern. If for each ability

interval I the conditional distribution FI(t) = Prob{LLR < t|fel} is well




approximated by a continuous, strictly increasing distribution function,

then LLRS and the random variable giving the §# interval of the response
pattern are approximately independent.

The effectiveness of the standardized LLR index in detecting random
responses to the initial five items was evaluated by constructing an
asymptotic ROC curve. A comparison of this ROC curve with the asymptotic
ROC curve for the LR index provides evidence of the impact of
standardization on the power of LR.

Results. Table 6 shows the LLR values at several cumulative
probabilities in each of the 32 conditional distributions used in the study.
Evaluation of these distributions was restricted to the left tail for
practical reasons; large index values will be used as cutting scores. In
several cases, no empirical value for LLR existed at a specific probability
and linear interpolation or extrapolation was required.

LIR (and thus LR) is not well standardized. The left tails of the
conditional distributions of LLR vary considerably across ; intervals. At
the same time. the 32 distributions do a reasonable job of documenting the
changes in LLR as a function of ;.

From Table 6 it is apparent that a large percentage of the response
patterns do not yield LR scores greater thanm 1.00. The response patterns
with the highest 3% of ability estimates, for example, will produce LR
values greater than 1.00 fewer than 5 times in 1,000. Response patterns
giving #s in the range [0.95, 1.26] will never produce LR indices greater
than 1.00. In general, ;s greater than 0.57 are extremely unlikely when the
initial five responses to the test are random. This result indicates that
patterns yielding these ;s can be excluded from appropriateness analyses
without significantly reducingApower.

Response patterns giving fs in the range {-0.81, -0.64] and
[-1.21. -1.14] are much more likely to produce large index scores. Patterns
within these ranges of ; are more likely to be classified as aberrant thanA
are patterns giving other fs. Consequently, the detection rates at these §
levels will be accompanied by higher false alarm rates. Table 7 gives the
hit rates and false alarm rates for the unstandardized LR index and the
standardized LLR index. At low false alarm rates, the power of the LR index

is greatly reduced by standardization. The standardized index classifies
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Table 6. LLR Index Scores

~

at Various Cumulative Proportions.

Alpha Level

4 Interval .001 .005 .01 .05 .10
[ 1.26, + «] 1.05 -1.85 -2.56 -4.17 -4.52
[ 0.95, 1.26) -0.28 -0.49 -1.03 -1.95 -3.23
[ 0.80, 0.95) 2.25 1.05 -1.70 -1.98 -2.11
[ 0.68, 0.80] 4, 94% 0.66 0.48 -1.94 -2.06
[ 0.57, 0.68] 0.77% -0.21 -0.27 -1.28 -1.96
[ 0.42, 0.57) 3.16 1.09 -0.49 -1.01 -1.31
[ 0.18, 0.42] 3.60% 0.76 -0.24 -1.15 -1.28
(-0.02, 0.18) 4.46 2.08 1.32 -0.67 -1.10
[-0.15, -0.02) 4.61% 2.58 1.77 0.18 -C.81
[-0.24, -0.15] 6.51 4.01 2.27 0.36 -0.31
[-0.32, -0.24] 4.61 2.36 2.13 0.88 0.43
(-0.40, -0.32] 5.38% 4.01 2.03 0.51 0.20
[-0.47, -0.40] 3.39 2.95 1.36 0.42 0.01
[-0.56, -0.47] 6.71%* 5.95 2.60 0.26 -0.06
[-0.64, -0.56) 2.10%* 2.02 1.98 1.17 -0.30
[-0.72, -0.64) 7.40% 3.75 3.29 1.30 0.01

Note: * = extrapolated value (no empirical value

probability < alpha).
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Table 6 (Continued)

Alpha Level

g Interval 001 005 .01 .05 .10

r-0.81, -0.72] 7.20% 5.23 2.91 2.12 1.05
{-0.90, -0.81] 4,48 3.93 2.35 1.58 0.96
(-0.98, -0.90] 4,30 3.96 3.53 1.27 1.10
(-1.06, -0.98] 2.91% 2.88% 2.84 1.77 0.88
t-1.14, -1.06) 2.17%* 2.17%* 2.15 1.49 0.€3
{-1.21, -1.14] 11.97%* 6.00 1.88 1.43 1.13
[-1.29, -1.21) 1.98 1.39 1.25 0.89 0.56
{-1.38, -1.29] 5.37%* 5.28 5.10 0.67 0.49
[-1.48, -1.38] 5.02% 4.52 3.61 0.4 0.29
[-1.59, -1.48] 3.34% 3.21 3.20 2.40 0.43
[-1.71, -1.59] 2.56% 2.54 2.52 2.28 1.94
[-1.83, -1.71] 1.76%* 1.75 1.72 1.62 1.49
i-1.92, -1.83] 1.99 1.14 1.12 1.05 0.97
(-2.05, -1.92] 1.09 1.06 0.83 0.69 0.62
[-2.22, -2.05] 1.08 0.88 0.84 0.40 0.3

[ - =, -2.22] 1.12 0.90 0.51 0.38 0.26

Note: #* = extrapolated

probability <

alpha).

value (no empirical value
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Table 7.

Preportion of Aberrant Response Patterns Detected by

Stiandardized and Unstandardized Indices at Selected ROC Curve Points

Standardized Unstandardized
Q LILR Index LR Index
.001 .00 .49
.005 .16 .62
.01 .52 .66
.C2 .60 .71
.03 .68 .75
.04 .12 .17
.05 .75 .78
.07 .80 .81
.10 .85 .85
Note: a = Preportion of Normal Patterns Misclassified as Aberrant.
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less than 1% of the aberrant patterns correctly at a false alarm rate of
.001, whereas the unstandardized index has a 50% detection rate at the same
error level. At a false alarm rate of .005, the standardized index has only
25% of the power of the unstandardized index. The detection rates for both

indices are roughly equivalent at false alarm rates of .05 and beyond.

Discussion. The analyses presented in this study represent only one of
several approaches to standardizing appropriateness indices. The intent
here was not to develop the best standardization of the LR index but rather,
to evaluate the effect of one type of empirical standardization on the power
of LR. Molenaar and Hoijtink (1987) and Kogut (1988) provide examples of
alternative procedures for obtaining the conditional distributions of an
appropriateness index.

The need for standardization results from a confounding of test scores
or 4§ and appropriateness measurement. Several forms of response aberrance
w1ll produce a strong relation between estimated ability and measured
appropriateness. For example, we would expect that when cheating takes
place over a significant portion of a test, the resulting test scores or
ability estimates will most often be above average. Consequently, when
attempting to identify cases of cheating, non-aberrant response patterns
that vield above-average scores are more likely to be misclassified as
aberrant than are non-aberrant patterns yielding below-average scores.
Because labeling an examinee as a possible cheater carries potentially
serious consequences for that examinee, detection procedures that are more
likely to misclassify one group of examinees than other groups will not be
considered fair. Use of a well-standardized appropriateness index, however,
will create a situation where no single group of examinees--classified by
ability--is "singled out" when testing for cheating. Although the
standardized index may provide less power than its unstandardized
counterpart, the decrease in detection rates may be a necessary cost for
ensuring that measured appropriateness and test scores are independent.

In other circumstances, the unstandardized index may be preferred over
the standardized version. This might be the case when detection rates
decrease significantly after standardizing and the consequences of using the
unstandardized index--in which higher false alarm rates will occur for

certain ability grcups--are not considered to be particularly negative for




examinees or test users. In general, procedures that identify some
examinees as possibly having test scores that are spuriously low, with the
concomitant opportunity to obtain a higher test score, should be well
received by most of these examinees.

The negative consequences of random responses to initial items on an
adaptive test result from the test’'s inability to recover from this
situation. In these cases. the examinee has given a pattern of resnonses
from which the adaptive test cannot adequately estimate ability. It may be
somewhat of a misnomer to label these response patterns as aberrant; what is
certain is that these patterns will often produce spuriously low test
scores. Identifying examinees who give these patterns focuses attention on
the test itself rather than on the examinees. The social stigma that
results from being suspected of other forms of response aberrance, notably
cheating, should not result in this case. Thus, the cost of higher false
alarm rates for some ability groups that will result when using the
unstandardized LR index may be an acceptable price to pay in order to obtain

optimal detection rates.
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VIIL{. STUDY 7: GENERALIZABILITY OF DETECTION USING
THE LIKELIHOOD RATIO INDEX

Purpose. Likelihood ratio tests achieve their power through
specificity. An optimal test for detecting four initial random responses is

not an optimal test for detecting five initial random responses. The

urpose of this study is to determine how sensitive LR is to misspeci-
fication of the number of initial random responses. In the unlikely event
that a likelihood ratio test for four initial random responses turns out to
be nearly optimal for detecting any number of initial random responses, then
a very simple, nearly optimal appropriateness measurement procedure can be
formulated.

On the other hand, if it turns out that the optimal test for k initial
responses is not close to being optimal in detecting «'=k initial random
responses, then the situatien is somewhat mnre complicated. Nonetheless an
optimal test can still be obtained by first determining the proportion of
people who respond randomly to the first item only, to the first two items,
to the first three items. etc. The point is discussed after some results
are presented.

Study 7 attempts to determine the ability of an LR index designed to
detect random responding on the first k items to detect random respondiig on

a shorter or longer initial string of items.

Data Generation. Four conditions of actual aberrance were simulated by

creating samples of 2. 000 response patterns where the initial two, three,
four, or five responses were random. These aberrant samples were each
combined with 4,000 normal patterns and LR indices for detecting random
responses to the initial two, three, four, or five items were computed for
each pattern. ROC curves were then constructed for each of the 16

conditions defined by the combinations of actual and hypothesized aberrance.

Results. Figure 8 shows three graphs containing the ROC curves for the
LR index computed to detect random responses to the initial two items.
Actual aberrance consisted of random responses to the initial three, four,
and five items. The darker curve in each graph is the ROC curve for the
rulv optimal index. Optimal ROC curves represent the detection rates that
would be arhieved if the actual form of aberrance were c rrectly specified

v the LR index. Figure 9 compares the ROC curves for the LR index for




HIt Rate

Figure 8. ROC Curves for Likelihood Ratio Index where Hypothesized
Aberrance = Random Responses to the Initial Two Items and Actual Aberrance =

Random Responses to the Initial k Items.
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False Alarm Rate
Figure 9. ROC Curves for Likelihood Ratio Index where Hypothesized

Aberrance = Random Responses to the Initial Three Items and Actual Aberrance

= Random Responses to the Initial k Items.
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detecting three random responses with optimal detection rates, where aciia!l
aberrance was two, four, and five random responses. Figure 10 shows the RGZ
curves for the LR index for detecting four random responses, where actual
iberrance was two, three, and five random responses, versus optimal
detection ractes. Figure 1l shows the ROC curves using the LR index for five
random responses. where aberrance was actually random responses to the
initial two. three, and four items, compared to optimal ROC curves.

The LR index computed for two random responses (Figure 8) is reasonablv
effective at detecting three random responses, but is nuch less effective at
detecting initial sequences of four and five random responses. The LR index
computed for three random responses (Figure 9) performs well when actual
aberrance is either two or four random responses. The LR index for four
random responses (Figure 10) is effective in detecting either three or five
random responses. The IR index for five random responses (Figure 1l1) does a

good job at detecting random responses to the initial four jitems.

viscussion. The high detection rates displaved by the IR indices
appedr to generalize to adjacent forms of aberrance. Together the LR
indices for three or four items give moderately high detection rates for
initia]l random responses on two through five items. That is, the LR index
computed for three random responses (Figure 9) does a good job of
identifying patterns containing random responses to the initial two or four
items and provides optimal detection for the case of three random responses,
while TR computed for four responses (Figure 11) detects an initial sequence
of three, four, or five random responses well.

The likelihood ratio indices show sufficient sensitivity to length of
the initial segment of random responses to be useful for estimating the
proportion of people fumbling on one item, on two items, on three items,
etc. When these proportions are known, a single optimal test can be
formulated as follows. Let LRk denote the likelihood ratio statistic for
random responding on exactly k items. Let Py denote the proportion of
people randomly responding on exactly k items. Thus Py is the proportion of
normal examinees, Py the proportion of examinees randomly responding on the

first item only, etc. Then it can be shown that the index

15
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Hit Rate

False Alarm Rate

Figure 10. ROC Curves for Likelihood Ratio Index where Hypothesized

Aberrance = Random Responses to the Initial Four Items and Actual Aberrance

= Randoa Responses to the Initial k Items.
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Figure 11. ROC Curves for Likelihood Ratioc Index where Hypothesized

Aberrance = Random Responses to the Initial Five Iltems and Actual Aberrance

= Random Responses to the Init{al k Items.




is optimal for testing the hypothesis that the examinee responded randomly
on at least one item against a hypothesis of no fumbling. This index is
optimal in the sense that it produces the highest ROC curve, or
equivalently, has highest power among all tests for fumbling with any

specified false positive rate.
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IX. CONCLUSIONS

CAT has the potential for providing accurate ability estimation with
significantly fewer items than standardized tests, provided the IRT model
used in estimating ability and selecting items is appropriate. The
responses used to compute initial estimates of ability are particularly
important. When these responses fail to conform to the IRT model, final
ability estimates are found to be highly inaccurate, even when subsequent
items are answered in accordance with the IRT model. The results presented
in Study 1 indicate that random responses to as few as the initial two 1tems
establish an ability estimate that anchors the final § well below 6. For
examinees of above-average ability, the amount of underestimation can be
severe.

The LR index, which provides the theoretically highest possible
detection rates for a specified degree of aberrance, was shown in Study 2 to
have significant power for detecting an initial sequence of random
responses. High hit rates, relative to low false alarm rates, were observed
for even the least severe case where only the initial response was random.
These results indicate that a sequence of random responses to initial items
on an adaptive test can be detected with the degree of accuracy required by
test practitioners.

Four nonoptimal appropriateness indices were examined in Study 3.
Unlike the LR index, these indices do not provide a specific test of an
alternative hypothesis, but several have demonstrated near optimal detection
rates for some forms of aberrance on conventional tests. These nonoptimal
indices were not effective, however, in detecting random responses to the
initial five items on a 15-item adaptive test.

In Study 4, sample-based ROC curves were constructed varying Ns for
normal and aberrant patterns. These analyses were needed to interpret the
accuracy of previous studies using sample-based ROC curves and to establish
the sample sizes needed for Study 5 and Study 7. The results from Study 4
indicated that samples of 4,000 normal patterns and 2,000 aberrant patterns
provided for near-asymptotic ROC curves.

Study 5 examined the power of the LR index when an item security
procedure was used during item selection. The item security procedure used

in Study 5 did not reduce the effectiveness of the LR index. <Consequently,
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the security procedure was not used in subsequent studies. Note that rthe
computation of LR is not complicated by the introduction of a security
procedure. The analytic procedure for estimating ROC curves is not used
with a nondeterministic item selection algorithm because there are too many
possible test outcomes.

The LR index was shown to be poorly standardized in Study 6. A
standardized version of LR was developed, with the standardized index
providing significantly less power than the unstandardized index at low
false alarm rates. Fortunately, standardization is not nearly so important
in the detection of fumbling as it is with socially undesirable behavior,
such as cheating.

Finally, the resulcs in Study 7 indicate that the LR index is capable
of detecting sequences of random responses adjacent to the sequence
specified when computing the index. In particular, the LR index computed
for random responses to the initial three items was able to identify a
sequence of two or four random responses adequately, the index computed for
four items was able to detect either three or five reasonably well, and LR
computed for five items displayed high levels of power for detecting a
sequence of four random responses. The sensitivity of LR to the length of
the initial segment of random responses suggested LR may be useful in

determining the distribution of aberrance.

Recommendations for Further Research
1. Obtaining Base Rates for Aberrance. The LR indices possess remarkable

power for identifying-patterns containing sequences of random responses of
specified length. Thus, the indices may be useful in estimating the base
rate or distribution of fumbling in the general population and in various
groups. With such estimates the effectiveness of procedures designed to
reduce fumbling could be evaluated. Estimates could also be used to
determine whether fumbling is more common in minority or other
demographically defined groups. Finally, as noted in Study 7, the relative
frequency of different degrees of fumbling can be incorporated in a single

optimal test for any degree of fumbling.

2. Decision- etic opriateness Measurement. Drasgow and Guertler

(1987) have argued that the detection rates for an appropriateness index in
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simulation studies provide only a portion of the information needed to
determine a cut score for the index. The selection of a cut score should
also incorporate the base rate of aberrance in the population of interest as
well as the relative importance of the possible classification outcomes.
For example, which outcome has greater disutility--classifying a normal
pattern as aberrant (false positive) or classifying an aberrant pattern as
normal (false negative)? The values assigned to these potential outcomes
will likely have a significant effect on how the appropriateness index is
evaluated and used.

Drasgow and Guertler (1987) suggest a Bayesian scheme for handling the
problem of selecting a cut score, where an index score ¢t 1is claczified as
aberrant when

(Prob(c|Ab) 1 - Prob(Ab) 4 72
(14)

Prob(t|N)  ~ Prob(Ab) U,- U

where Prob(tlAb) / Prob(th) is the likelihood ratio (equation 1), Prob(Ab)
is the base rate of aberrance, and Ul1,U2,U3, and U4 are the (dis)utilities
associated with the possible classification outcomes:

Ul classifying an aberrant pattern as aberrant ("correct positive");

U2 classifying a normal pattern as aberrant ("false positive");

U3 «classifying an aberrant'pattern as normal (“"false negative");

U4 classifying a normal pattern as normal ("correct negative").

Comparisons of index scores developed using equation 14 in different
testing situations may highlight interesting and important distinctions in

how appropriateness measurement might be implemented.

3. Evaluating Change Scores. An initial sequence of random responses to an
adaptive test using Bayesian estimation produces a § that typically
underestimates # for examinees of average to above-average ability. For
high-ability examinees, the underestimation will be severe. For less able
examinees, the negative bias in the ability estimate will be less severe.
In practice, we would like to identify those examinees whose s suffer the
most from random responses to initial items.

In simulation research we can determine the change score for an

examinee by computing




- - )
. HC 9N 0A' (15)

where HN is the ability estimate obtained when each it?m in the adaptive
test is answered in accordance with the IRT model and BA is the ability
estimate obtained after the examinee gives random responses to initial
irems. With this additicnal information, the distribution of 8C among the
aberrant patterns not identified by LR can be observed. It is expected that
9C will generally be small among aberrant examinees not identified by LR.

We have observed that response patterns that are hard to detect typically

have small change scores.
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